Radial symmetry for a generalized nonlinear fractional p-Laplacian problem
نویسندگان
چکیده
منابع مشابه
Hopf’s Lemma and Constrained Radial Symmetry for the Fractional Laplacian
In this paper we prove Hopf’s boundary point lemma for the fractional Laplacian. With respect to the classical formulation, in the non-local framework the normal derivative of the involved function u at z ∈ ∂Ω is replaced with the limit of the ratio u(x)/(δR(x)) , where δR(x) = dist(x, ∂BR) and BR ⊂ Ω is a ball such that z ∈ ∂BR. More precisely, we show that lim inf B∋x→z u(x) (δR(x)) > 0 . Als...
متن کاملBIFURCATION ALONG CURVES FOR THE p-LAPLACIAN WITH RADIAL SYMMETRY
We study the global structure of the set of radial solutions of a nonlinear Dirichlet eigenvalue problem involving the p-Laplacian with p > 2, in the unit ball of RN , N > 1. We show that all non-trivial radial solutions lie on smooth curves of respectively positive and negative solutions, bifurcating from the first eigenvalue of a weighted p-linear problem. Our approach involves a local bifurc...
متن کاملExistence solutions for new p-Laplacian fractional boundary value problem with impulsive effects
Fractional differential equations have been of great interest recently. This is because of both the intensive development of the theory of fractional calculus itself and the applications of such constructions in various scientific fields such as physics, mechanics, chemistry, engineering, etc. Differential equations with impulsive effects arising from the real world describe the dyn...
متن کاملA generalized Fucik type eigenvalue problem for p-Laplacian
In this paper we study the generalized Fucik type eigenvalue for the boundary value problem of one dimensional p−Laplace type differential equations { −(φ(u′))′ = ψ(u), −T < x < T ; u(−T ) = 0, u(T ) = 0 (∗) where φ(s) = αs + − βs − , ψ(s) = λs + − μs − , p > 1. We obtain a explicit characterization of Fucik spectrum (α, β, λ, μ), i.e., for which the (*) has a nontrivial solution. (1991) AMS Su...
متن کاملTHE BREZIS-NIRENBERG PROBLEM FOR THE FRACTIONAL p-LAPLACIAN
We obtain nontrivial solutions to the Brezis-Nirenberg problem for the fractional p-Laplacian operator, extending some results in the literature for the fractional Laplacian. The quasilinear case presents two serious new difficulties. First an explicit formula for a minimizer in the fractional Sobolev inequality is not available when p 6= 2. We get around this difficulty by working with certain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinear Analysis: Modelling and Control
سال: 2021
ISSN: 2335-8963,1392-5113
DOI: 10.15388/namc.2021.26.22358